Symmetry Breaking Using Fluids II: Velocity Potential Method
نویسنده
چکیده
A generalization of scalar electrodynamics called fluid electrodynamics is presented. In this theory a fluid replaces the Higgs scalar field. Fluid electrodynamics might have application to the theory of low temperature Helium superfluids, but here it is argued that it provides an alternative method of approaching symmetry breaking in particle physics. The method of constructing fluid electrodynamics is to start with the velocity decomposition of a perfect fluid as in general relativity. A unit vector tangent to the flow lines of an isentropic fluid can be written in terms of scalar potentials: Va = h −1(φa +αβa − θS). A novel interacting charged fluid can be obtained by applying the covariant derivative: Da = ∂a + ieAa to these scalar potentials. This fluid is no longer isentropic and there are choices for which it either obeys the second law of thermodynamics or not. A mass term of the correct sign occurs for the A term in the stress, and this mass term depends on the potentials in the above vector. The charged fluid can be reduced to scalar electrodynamics and the standard approach to symmetry breaking applied; alternatively a mass can be induced by the fluid by using just the thermodynamic potentials and then fixing at a critical point, if this is taken to be the Bose condensation point then the induced mass is negligible.
منابع مشابه
Time-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کاملStretching and mixing of non-Newtonian fluids in time-periodic flows
The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer solutions in nearly two-dimensional magnetically driven flows, in order to distinguish between the effects of viscoelasticity and shear thinning. Viscoelasticity alone is found to suppress stretching and mixing mildly, in agreement with some previous experiments on time-periodic flows. On the other ...
متن کاملShear-Driven Circulation Patterns in Lipid Membrane Vesicles
Recent experiments have shown that when a near-hemispherical lipid vesicle attached to a solid surface is subjected to a simple shear flow it exhibits a pattern of membrane circulation much like a dipole vortex. This is in marked contrast to the toroidal circulation that would occur in the related problem of a drop of immiscible fluid attached to a surface and subjected to shear. This profound ...
متن کاملRotating Bose Gas
We study the Gross-Pitaevskii functional for a rotating two-dimensional Bose gas in a trap. We prove that there is a breaking of the rotational symmetry in the ground state; more precisely, for any value of the angular velocity and for large enough values of the interaction strength, the ground state of the functional is not an eigenfunction of the angular momentum. This has interesting consequ...
متن کاملGross – Pitaevskii Theory of the Rotating Bose Gas
We study the Gross-Pitaevskii functional for a rotating two-dimensional Bose gas in a trap. We prove that there is a breaking of the rotational symmetry in the ground state; more precisely, for any value of the angular velocity and for large enough values of the interaction strength, the ground state of the functional is not an eigenfunction of the angular momentum. This has interesting consequ...
متن کامل